PMM U.S.S.R.,Vol.45,pp. 282-285 0021-8928/82/2 0282 $7.50/0
Copyright Pergamon Press Ltd.1982.Printed in U.K.

UDC 539.3:534

ON THE EXCITATION OF A PRESTRESSED CYLINDER™

V.V. KALINCHUK and I.B. POLIAKOVA

The linearized theory of propagation of elastic waves /1,2/ is used to develop a
method of investigating the specific features of an infinite, prestressed circular
cylinder excited by a rigid strap vibrating at its surface. The material of the
cylinder is assumed to be compressible, initially isotropic, with elastic potential
of an arbitrary form. The axisymmetric oscillations of the strap are harmonic, of
frequency . The study is based on the method of reducing a boundary value problem
of the theory of elasticity to an integral equation, or to a system of integral
equations, depending on the conditions of the contact between the strap and the
cylinder.

Numerical analysis of the properties of the integral operator symbols makes it possible
to study the influence of the initial deformation intensity, as well as of the choice of the
elastic potential form, on the basic characteristics of the wave process taking place within
the cylinder. A more detailed analysis can be made in the course of constructing solutions
of the integral equations. 1In particular, the problem of a radially oscillating strap canbe
used to show the effect of the magnitude of the initial stresses on the distribution of con-
tact stresses under the stamp, and on the behavior of the free surface outside it.

1. The initial state of stress is assumed homogeneous, i.e. /1,2/

Un® = 8in (Ai —4) zp, n=1,2,3
M = const, Ay = &y 5= Ay, 01, *° = 0yp*° F= Oy

Here u,® denote the components of the initial displacement vector, o;*° are the components
of the generalized initial stress tensor, A; denote the relative elongations of the fibers
and din is the Kronecker delta.

Let us pass to the cylindrical r.@,z-coordinate system, directing the Oz-axis along
the Ozy-axis. Using the principle of limit absorption /3,4/ we can reduce the problem of
axisymmetric excitation of a cylinder by a virbrating strap to the study of the equations
Wr G &) = Ur (2) ¥, w2, ) = W (z) e are respectively the radial and axial component of the dis-
placement vector, g¢(z) and 7()) are the normal and tangential components of the contact stress
vector, R =1 is the cylinder radius and ¢ denotes the half-width of the strap)
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Ay (u, %) = A;4;4 720,06, (05 — 0,%) Iyy]qy
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my = MAgpyau® + A.d; di = (4,0:% -+ S 47!

Sy = pasgrgd — Agu? Sy = pagn,® — Al

01,2 =05(D;, FVE) Z =Dy — 4D:Dy

Dy = A,4,, Dy= Agu? — 4,5 — A;S;, Dy = 58,

Ay = aphy® + 0?0, Az = Psh® -+ 053*°, Ay = Ak (ags + s)
Ag = agahs® + 035%°, Ay = Wyshs® + 011%°, %? = Pl !
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Here Ijn=[I;{os) (= 0,1, n= 1,2 are the modified Bessel functions, ¢ is the density of the med-
ium, a;; and p;; are the coefficients characterizing the relations connecting the stresses and
deformations determined by the elastic potentials /1,2/. Their concrete forms corresponding
to the types of elastic potential considered in the paper, will be given below.

The contour T lies on the real axis and deviates from it only when going round the neg-
ative singularities of the function K} (1.3} from above, and round the positive singular-
ities from below. The choice of the contour is governed by the principle of limit absorption
/4/.

The functions Kjn (@} (1.3), (1L.4) are meromorphic in the complex plane, real on the real
axis, and have on it a finite number of zeros and poles, the number depending on % (Knn (u) are

even and Kj, (u) ( ¥ n) are odd). The following expression holds when u - o0:
Kim (1) = e5p8 2 + djpi % -+ O (u9) {1.6}

The constants appearing in (1.6) depend on the cylinder material characteristics and on the
magnitude of the initial stress. Their actual form can be obtained simply using the expans-
ions of the Bessel functions, but they are cumbersome and therefore omitted.

2. The relations (1.2)— (1.4) make possible the study of the effect of the initial de-
formation intensity on the wave process within the cylinder. As we know /4,5/, the behavior
of the free surface can be described with sufficient accuracy by means of the formulas

Gt =gtz —0a), *r—a>1 (2.1
o) = S‘RL Ty 0 (B (2.2)
k=.~=1

where gz, and 3, are roots of the equation A (u,#)=0 at o0,k**=0 and o,*° =S8, respectively,

and R, ars numerical factors
ang &y arg npullericar racioXs.

It is clear that the poles of the functions XKj{w) (1.3) are connected with the phase
velocities of the waves propagating along the cylinder surface by the relations Vi = oz,
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surface waves, by analysing the effect of the initial deformation intensity on the distribu-

tion of zeros of the function A (u, %) (1.4).
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The constants ey and py appearing in the expressions for the integral operators will have the

form
N 2p+koSaii°, i== 1,3
= A ESeu®, Mg = nb keSmyu®, (= 2,3

- koSa;:°, Hii » oMy, & &y

2021 —b—7ye, a® =22+ 6+ 40 +20U0+ Ve
=a—vb af=2+23+2b+2+pe

S b yei2, my® = b+ {24 ) cld

=4 —keyS, AgZ=1-+2k(1+7)8

y=Mp, ko= (34207, pp=4p

in the case of the Murnaghan potential (with only the linear terms retained /2/)where 24 and g are
the Lam@ coefficients and a,b,c are third order constants appearing in the expression for the
Murnaghan potential, and the form

ai = M2+ 2p — MoSA) A, i =1, 3
a3 = w{ms, s = (28 — MaSAV/IAA, (A, + A0
Ay=1—05 kySAY, Ag=1-4 (1 + ) koSA
A=t — 1+ 7) Sk

in the case of a harmonic type potential /1/.
Figures 1 and 2 depict the plots of = (zg—2)-10%z, for the steel O9G2S and alloy AMG-6,
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harmonic potential. Numbers 1, 2 and 3 denote the curves for the values § = 5.107%, 1073, 5.-1073.
We see that in the case of steel an increase in the initial stress leads to increased phase
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velocity exceeding its dependence on the form of the elastic potential. For the alloy this
is not true, as the change in the form of the elastic potential alters completely the character
of the dependence of the phase veloc1ty of the wave on the initial stress. The latter fact

1
shows that wb o WAVE Brecascees 4 o At 2T Tar A L3
shows that when the wave pLULESSES 1l he ini Lially QeLurmeld Lo

ies are investigated, then not



284 V.V. Kalinchuk and I.B. Poliakova

only the initial deformation in-
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3. We shall investigate the effect of initial stresses on the wave process in the cy-
linder in more detail, using the problem of radial vibration of the strap. The solution of
this problem can be reduced to solving the integral equation

a

§ @G-8 =2mu, (), |21<a

-_—Q
As before, ¢ () are the contact stresses, U, (z) denote the displacements of the cylinder sur-
face under the strap, and k,(t) is given by the formula (1.2)— (1.4).

Pigure 3 depicts the curxves showning the distribution of real zeros

poles (solid lines) of the function K, (u) for a medium with a Murnaghan potential,
following values: A=926-105 N/m2 p = 475.10° N/m3 a=319.10° N/m3 b = —303-10° N/m? ¢ = —78,4.40°y /2 and
S=0. Numerical analysis shows that when &80 the qualitative aspect of the graph remain
the same, and that implies /4,5/ that (3.1) has a unique solution in L, «>1.

(3.1)

(dashed lines) and
for the

4. Knowing the distribution of zeros and poles of Ky (u), we can construct on approxi-
mate solution of the integral equation (3.1). Let us replace Ky () by the function /4,5/
n
K* () = o (w4 By [ ] (w2 — 5,2 (2 — L) (4.1)
k=1
Here B 2>»1 is a given approximation parameter, {y (=1, 2, ..., m)and z (k= 1,2,...,m) are real
poles and zeros and Kydw), &k(k=m-+1,....n) z (¢ =m +1,...,n) are complex numbers which can be
obtained from the condition of least deviation of K* (u) from Ky (v) on the real axis /4,5/. In (2.1)

and (2.2) we gave a schematic form of the solution for the case Ur (z) = exp (iz) and of the approximating
function (4.1) . The contact stressescan be written in the form (¥y are numerical coefficients)

9(®) = Kyt (0) + D} Ny [exp (iz, (a +2)) - exp (izy (e — )] +Olexp(—B(a—|z]))
k=1

The solutions in more detailed form as well as the formulas for Ny and & can be found in /4,5/.
Figure 4 gives the computer-derived graphs of the functions Reg = Re gpu? for 1=0

(plane strap case) and 2=17, % =55 S=0 (a dot-dash line). The curves 1,2, and J correspond

{=(Reg, — Reg)-10° for &= 5.10"p, 1073, 5-1073p.

to the quantity

Figure 5 depicts the graphs illustrating the displacement of the free surface of the
cylinder. The dot-dash line corresponds to o () (2.2) with §=0 , line 1 to (9 — ¢o)-10
with § =5.10" ¢ and line 2 to 1, (s — Po)-102 with S =10 | We see that when the initial

stress ilncreases, so does sharply its influence, and the greater the absolute value of the

derivative of ¢ (t) , the greater the influence.
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